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LETTER TO THE EDITOR 

Linear defects in two-dimensional systems: a finite-size 
investigation 
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t Department of Physics, FM-15, University of Washington, Seattle, Washington 98 195, 
USA 
$ Laboratorium voor Technische Natuurkunde, Technische Hogeschool Delft, Delft, The 
Netherlands 

Received 16 October 1981 

Abstract. Finite-size scaling theory is employed to study non-universal and crossover 
critical behaviour in two-dimensional systems with linear defects. The finite-size method is 
shown to reproduce very accurately the non-universality as known to be present in the case 
of the Ising model. The calculations show that the non-universal behaviour of all the models 
investigated in the king universality class can be described approximately by a single 
universal curve. 

Non-universal critical behaviour in two-dimensional systems is well known for systems 
with a two-component (Krinsky and Mukamel 1977) order parameter. Typical 
examples are the Baxter (1970) model and the Gaussian model (Wegner 1967). 
Recently, a new type of non-universality has been discovered (Bariev 1979, McCoy and 
Perk 1980) in the two-dimensional Ising model with a line defect, i.e. a line of enhanced 
nearest-neighbour couplings. Exact calculations have revealed that at the defect the 
local spontaneous magnetisation and the spin-spin correlation function are described 
by a magnetic defect exponent which depends continuously on the enhancement. 

Scaling theory for defect planes has previously been discussed by Bariev (1979) and 
by Burkhardt and Eisenriegler (1981). For completeness, we reformulate their treat- 
ments. 

Consider a ddimensional lattice of generalised spins with. (among others) a nearest- 
neighbour interaction K, as defined explicitly in individual cases below. There is a 
d*-dimensional defect with enhanced coupling strength (1 +D)K.  The relative devia- 
tion from the critical temperature T, is denoted by E = (T- Tc)/TC. We assume the 
presence of a bulk magnetic field h ;  hl is the magnetic field acting on the defect spins 
only. The singular part of the defect free energy per site fr-defined as the difference of 
the total free energy with and without defects divided by the number of defect 
sites-satisfies a scaling relation. For small ID1 and for arbitrary scaling length L with 
Ly7DI small, this relation reads 

f*(&, h, hl ,  D )  = L-d*fr(LYT&, LYhh, LYLhl, Ly;D), (1) 

where the scaling indices yT and yh are the usual thermal and magnetic exponents, and 

tions may be derived as follows. Consider a parameter in the ddimensional Hamil- 
tonian with exponent y.  Denote by o the critical dimension of the conjugate operator: 

y T  * and y h  * are related exponents: yT-d=y* , -d*  and y,-d=y;F-d* .  These rela- 
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the corresponding correlation function at large separation r decays as r-zw.  Then 
w + y = d, a well known relation which follows from the fact that the second-order 
derivative of the bulk free energy can be expressed as a sum over space of a conjugate 
correlation function. If y* is the scaling index of the parameter in the defect contribu- 
tion to the H a m i h i a n  conjugate to the same correlation function, then one finds 
w + y* = d*, applying the same argument to the second-order derivative of the defect 
free energy. Eliminating w one obtains y - d = y * - d*.  

Beyond the crossover regime-i.e. for ID/ or LyI'lDI large-one has 

Y(E,  h, hl, D )  = L-d*f*(LYrE, LYhh, LYhlhl, D) .  (2) 

If the enhancement is irrelevant ( y ?  < O), one expects yh,  = Y E ,  whereas crossover to 
new values for yh,  depending on the sign of D occurs for relevant enhancement (y $ 3  0). 
Only if D is marginal ( y $  = 0), may yhl continuously depend on D. Note that failure to 
scale D in equation (2) amounts to neglecting corrections to scaling and allowing only 
for D dependence in the critical amplitudes. Recall that the two-dimensional king 
model has a logarithmically divergent specific heat: a = 0; that is, UT = d* = 1, y $  = 0. 
In other words, at D = 0 the enhancement is a marginal operator. From the exact results 
it follows that the marginality persists for D f 0. The exact expression for the magnetic 
defect exponent (Bariev 1979, McCoy and Perk 1980) is 

1 
2T 

yhl = 1 ---+cos-l tanh(2KfD)I' (3) 

for the two-dimensional Ising model on a square lattice with nearest-neighbour 
coupling K, with enhanced coupling (1 +D)K for spins within one single row of the 
lattice; K', =;In(&+ 1) is the critical point. For the defects considered below the 
enhancement D is defined in the same way. 

In recent years finite-size scaling theory has been applied, in the form of 
phenomenological renormalisation, to a variety of exactly solved models (Nightingale 
1976,1977,1979, Sneddon 1978, Kinzel and Schick 1981a). Also, models for which 
critical exponents can be deduced with the universality hypothesis have been investi- 
gated. Since, as these calculations have indicated, the theory works so well already for 
very small systems, it has become a powerful tool for the calculation of critical point 
exponents (e.g. Hamer and Barber 1981, Blote et a1 1981, Denida 1981, Kinzel and 
Schick 1981a, b, RBcz 1980, Roomany and Wyld 1980). Under these circumstances an 
investigation of finite-size scaling for defect phenomena is very interesting. The 
formulation of finite-size scaling in this case is quite analogous to the theory for surface 
effects (Fisher 1971) and may be obtained as follows. 

Consider a system of finite extent. The finite size is characterised by a linear 
dimension n which is measured in units of the lattice spacing. The generalisation of 
equations (1) and (2) may then be obtained by introducing l / n  as an additional scaling 
field, with exponent 1. Below we invariably set the bulk parameters to their critical 
values. This being understood, they are henceforth omitted. For a finite system 
equation (2) generalises to 

(4) fr(hi, I / n ;  D )  = L-d'f*(LYhlhl, L/n; D). 

~11(0,1/n; D )  = L2yh1-d*X11(0, L/n; D )  - n 2 y h l - d * .  

For the defect susceptibility ,yll =$f"/ah: one consequently finds 

( 5 )  
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In applying this relation to the analysis of two-dimensional systems with line defects, ,yll 
is obtained by numerical differentiation of the free energy. The latter in turn is 
computed with a transfer matrix technique. Fitting ,yll for systems of increasing size to 
equation ( 5 )  yields yhl.  Note that ,yI1 follows directly from the total free energy so that 
f" need not be calculated explicitly. 

To investigate the validity of finite-size scaling for systems with defects, we first 
consider generalised Ising systems in the Ising universality class. The reduced Hamil- 
tonian (which includes - 1 / kg T as a factor) reads 

where si = *l; the sums are over pairs of nearest-neighbour sites (i, j ) ,  pairs of 
next-nearest-neighbour sites (k, l ) ' ,  and quartets of sites (m,  n, p, 4 )  on the elementary 
squares of a simple square lattice. 

For L = M = 0 one obtains the Ising model. If the condition cosh 4L = exp(-4M) is 
satisfied, the system reduces to a special case of the free-fermion model solved exactly by 
Fan and Wu (1969). This model has a critical line: sinh 2K = exp(-4L). Another 
special case we investigate is the eight-neighbour model M = 0. 

To calculate the critical line of this model, for which no exact result is available, we 
employed phenomenological renormalisation (Nightingale 1976, 1979). From 
infinitely long strips, with periodical boundary conditions, of widths n and n + 1 an 
estimate K,(n, 0) of the critical value of K is obtained. Table 1 shows the results for a 
series of increasing values of n for CY =L/K = 1 and (Y = -1/4. The extrapolated 
estimates K, ( n ,  i )  were obtained by fitting subsequent values of K,  (n, i - 1) to 
Kc(n, i )  = Kc(n, i - 1) + ~ n - ~ ,  For i = 1 we chose a fixed b = 3; for the king model 

Table 1. Various estimates of the critical points of the eight-neighbour model for a = 1, 
-114. 

a = l  a = -114 

KAn, 0) Kc(n, 1) Kdn, 2) KJn, 3) Kdn, 0) Kdn, 1) Kc(n, 2) 
n 0.19 0.190 0.190 19 0.190 19 0.6 0.69 0.69 

- - - 280 8162 - - 2 508 389 47 
3 251 120 13 543 93 - - 436 1817 - - 
4 137 387 29 368 16 388 - 635 0671 1776 - 
5 088 308 42 277 84 - 190 773 0230 6888 - 
6 062 809 50 240 10 126 978 855 5349 8158 - 
7 048 443 68 220 79 178 263 902 2058 8139 - 
8 039 741 19 210 35 220 271 928 3416 7852 6974 
9 034 173 03 204 31 239 269 943 2783 7604 7159 
10 030 449 01 200 63 251 952 1571 7442 7202 
11 027 866 29 198 30 257 957 6943 7347 7215 
12 026 019 90 196 75 961 3194 7294 7219 
13 024 665 52 195 70 963 7994 7264 
14 023 649 85 965 5612 7247 
15 966 8526 

Note. In each column the values in question are obtained by appending the digits below to the number in the 
heading. The absence of a result indicates a breakdown of the power-law fit or a result outside the range 
allowed by the format. 
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(a = 0) this is an exact result (Derrida and Vannimenus 1980). Performing similar 
extrapoktions with b as a free paremeter also for i = 1 corroborates this assumption and 
yields fully consistent though slightly less accurate results. We conclude K, = 

1 1 1 1 1 1 1 1 1 1 1  

0' 

Figure 1. The magnetic defect exponent, calculated by fittingXll for subsequent n (up to 
10) to equation (5) and extrapolated assuming power-law behaviour, for various values of 
the enhancement (data points) compared with yh, as given by the generalisation of equation 
(3) (full curves): ( a )  the Ising model; (b )  the free-fermion model: L -  1/5 (circles), -1/5 
(squares); (c) the eight-neighbour model: a = 1 (circles), -1/4 (squares). 



Letter to the Editor L37 

0.190 192 69 (5) for a = 1 and K,  = 0.697 220 (5) for a = -1/4, where the number in 
parentheses is an estimate of the error in the last digit. Note that the value K ,  = 0.1902 
for a = 1, obtained previously from series expansion (Dalton and Wood 1969), is 
consistent with our estimate. 

Figure 1 shows our results for Yhl as a function of D. For the Ising model the 
agreement with the exact result (3) is very good except for large D, where also the 
apparent convergence is less rapid. Also shown in figure 1 are the results for the 
free-fermion model (L = -1/5, 1/5) and the eight-neighbour model (a = 1, -1/4). 
Qualitatively, the behaviour of Yhl is similar to the king case, in agreement with what is 
to be expected from universality and scaling. A surprising result is that y h l  is described 
rather accurately by equation (3) with D' = DK,/Kf  substituted for D. It is consistent 
with our numerical results to attribute deviations from this generalisation of equation 
(3) to incomplete convergence. However, lacking a theoretical justification and in view 
of the limited present numerical accuracy it is impossible to make a definite statement. 

Similar calculations were performed for the q-state Potts model. The reduced 
Hamiltonian of this model reads 

X = 2 K  Ssis i ,  
(i ,  i) 

where si = 1, . . . , q, (i, j )  runs through all pairs-of nearest-neighbour sites of a simple 
square lattice. The critical point is K ,  = $ln(dq+ 1) (Potts 1952). The model can be 
generalised (Kasteleyn and Fortuin 1969, Baxter 1973) to non-integral values of q. 
Also in the general case a transfer matrix may be formulated and a finite-size analysis 
can be performed (Blote e? a1 1981). Two cases were investigated: q = 1/2 and q = 3. 
The values of yT are believed to be 0.56. . . and 6/5 respectively (den Nijs 1979 and, 
e.g., Blote et a1 1981). As explained above, this implies the enhancement to be 
irrelevant for q = 1/2 and relevant for q = 3. Figure 2 shows some results obtained for 
Yhl in both cases. Convergence is rather poor, but it is clear that there is the tendency of 
y h l  to be independent of D for 4 = 1/2 and of Yh, to assume three different values for 

o.9b 

0 

Figure 2. The magnetic defect exponent for the Potts model with q = 1/2 (circles) and q = 3 
(triangles), calculated by fitting xll to equation (5) for subsequent values of n (up to 9); to 
compute xll a magnetic field was introduced giving defects spins with si = 1 a different 
statistical weight. The arrows indicate the trend of the estimates of yh, obtained for 
increasing n ;  their length is 10 times the difference of the estimates with largest n. The full 
curve is the result for q = 2 (the Ising model), included for comparison. 
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q = 3, depending on whether D < 0, D = 0, or D > 0. We note that from the con- 
jectured values of the magnetic exponent of the Potts model (Nienhuis eta1 1980, Blote 
et a1 198 l j  one obtains Yhi = 0 .917 . .  . for q = 112 and Y h ,  = 0.866. .  . for q = 3. For 
q = 3 and large D convergence seems to be to an unphysical value of Y h ,  > 1, which 
corresponds to a negative, and therefore meaningless, critical dimension. We do  not at 
present have an explanation of this result. However, if in a renormalisation group 
description the behaviour of the system for D > 0 is governed by a fixed point at infinite 
coupling, a breakdown of finite-size scalingfor II x CO systems is not unexpected. In fact, 
unphysically large results for critical exponents of the Potts model with q>4 as obtained 
in a finite-size analysis (Blote et a1 1981) have been interpreted in terms of a 
zero-temperature fixed point (Blote and Nightingale 1982). 

We wish to thank Ted Burkhardt and Erich Eisenriegler for stimulating discussions, and 
Michael Wortis for reading the manuscript. These investigations form part of the 
research programme of the Stichting voor Fundamenteel Onderzoek der Materie 
(FOM) and were in part supported by the National Science Foundation under grant 
DMR 79-20785-AOl. 

References 

Bariev R Z 1979 Sou. Phys.-JETP 50 613 
Baxter R J 1970 Ann.  Phys., N Y  70 193 
- 1973 J.  Phys. C: Solid State Phys. 6 L455 
Blote H W J and Nightingale M P 1982 to be published 
Blote H W J, Nightingale M P and Derrida B 1981 J.  Phys. A :  Math. Gen. 14 L45 
Burkhardt T W and Eisenriegler E 1981 Phys. Rev. 24 1236 
Dalton N W and Wood D W 1969 J. Math. Phys. 10 1271 
Derrida B 1981 J. Phys. A: Math. Gen. 14 L5 
Derrida B and Vannimenus J 1980 Colloque sur les mtthodes de calculpour l’ftude de phknom?ner critiques de 

Fan C and Wu F Y 1969 Phys. Rev. 179 560 
Fisher M E 1971 CriticalPhenomena: Proceedings Enrico Fermi International School of  Physics ed M S Green 

Hamer C J and Barber M N 1981 J.  Phys. A :  Marh. Gen. 14 259 
Kasteleyn P W and Fortuin C M 1969 J .  Phys. Soc. Japan 26 (Suppl.) 11 
Kinzel W and Schick M 1981a Phys. Rev. B 23 3435 
- 1981b Phys. Rev. B 24 324 
Krinsky S and Mukamel D 1977 Phys. Rev. B 16 2313 
McCoy B M and Perk J H H 1980 Phys. Rev. Lett. 44 840 
Nienhuis B, Riedel E K and Schick M 1980 J. Phys. A :  Math. Gen. 13 L189 
Nightingale M P 1976 Phpsica A 82 561 
- 1977 Phys. Lett. 59A 486 
- 1979 Proc. Koninklijke Nederlandse Akademie van Wetenschappen 82 235 
den Nijs M P M 1979 J. Phys. A: Math. Gen. 12 1857 
Potts R B 1952 Proc. Camb. Phil. Soc. 48 106 
RBcz Z 1980 Phys. Rev. B 21 4012 
Roomany H H and Wyld H W 1980 Phys. Rev. D 21 3341 
Sneddon L 1978 J.  Phys. C: Solid State Phys. 11 2823 
Wegner F 1967 Z. Phys. 206 465 

Carry le Rouer (Berlin: Springer) 

(New York: Academic) 


